Big data. Alternativa para una salud inteligente. Revisión de un modelo conceptual

Authors

  • Gerardo García-Maldonado Universidad Autónoma de Tamaulipas. Facultad de Medicina de Tampico “Doctor Alberto Romo Caballero”
  • Eugenio Guerra-Cárdenas Universidad Autónoma de Tamaulipas. Facultad de Medicina de Tampico “Doctor Alberto Romo Caballero”
  • Evelyn Montserrat Soriano-Juárez Universidad Autónoma de Tamaulipas. Facultad de Medicina de Tampico “Doctor Alberto Romo Caballero”

Keywords:

Big data; cuidado de la salud; análisis en big data; sistemas de información en salud; marco conceptual

Abstract

Introduction: Big Data emerged in the 1990s and refers to large volumes of complex data that can not be managed with traditional tools. Its fundamental characteristics are volume, speed and variety, although other characteristics have been added with the idea of improving the reliability of the information. In the field of health, this technology has transformed the collection and analysis of medical data from different sources, with the intention that the results are applicable to the population. The safe management of information remains a pending task.

Objectives: To review some topics related to this topic, and briefly analyze the phases of use and processing of Big Data through a conceptual model. The last objective, is to describe how the conceptual model can be applicable in psychiatry.

Material and methods: A search was carried out in databases such as Google Scholar, PubMed and Web of Science, using terms recommended in the MeSH to optimize the search. Original articles, reviews and meta-analyses published in the last five years were selected.

Results: Big Data has facilitated the personalization of treatments, and the creation of predictive diagnosis and preventive models in health. It has also optimized hospital management and decision-making. The development of computer technology, has enabled these achievements. The lack of standardization in systems, and concerns about data privacy continue to be a challenge.

Conclusions: Despite its potential, Big Data remains limited by interoperability and data quality. It is essential to implement ethical frameworks and standardize processes for its effective implementation, especially in areas such as psychiatry.

References

1. Mallappallil M, Sabu J, Gruessner A, Salifu M. A review of big data and medical research. SAGE Open Med [Internet]. 2020;8:2050312120934839. http://dx.doi.org/10.1177/2050312120934839

2. Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff (Millwood). 2022;41(2):181-7. doi:10.1377/hlthaff.2021.01317

3. Ristevski B, Chen M. Big data analytics in medicine and healthcare. J Integr Bioinform. 2022;19(1):20210035. doi:10.1515/jib-2021-0035

4. Khoury MJ, Ioannidis JPA. Big data meets public health. Science. 2023;375(6585):1054-5.doi:10.1126/science.abj4538

5. Roski J, Bo-Linn GW, Andrews TA. Creating value in health care through big data: opportunities and policy implications. Health Aff (Millwood). 2023;42(5):1080-5. doi:10.1377/hlthaff.2022.00211

6. Kruse CS, Goswamy R, Raval Y, Marawi S. Challenges and opportunities of big data in health care: a systematic review. JMIR Med Inform. 2021;9(2):e21737. doi:10.2196/21737

7. Goyal P, Malviya R. Challenges and opportunities of big data analytics in healthcare. Health Care Sci [Internet]. 2023;2(5):328-38. http://dx.doi.org/10.1002/hcs2.66

8. Wood RM. Implementing big data analytics in practice - A response to “Factors impacting

the adoption of big data in healthcare: A systematic literature review”. Int J Med Inform [Internet]. 2024;192:105637. http://dx.doi.org/10.1016/j.ijmedinf.2024.105637

9. Hassan M, Awan FM, Naz A, de Andrés-Galiana EJ, Alvarez O, Cernea A, et al. Innovations in genomics and big data analytics for personalized medicine and health care: a review. Int J Mol Sci [Internet]. 2022;23(9):4645. http://dx.doi.org/10.3390/ijms23094645

10. Rutledge RB, Chekroud AM, Huys QJ. Machine learning and big data in psychiatry: toward clinical applications. Curr Opin Neurobiol [Internet]. 2019;55:152-9. http://dx.doi.org/10.1016/j.conb.2019.02.006

11. Raji M, Dandekar R, Aggarwal A. Privacy and security of health data in big data analytics. J Med Syst [Internet]. 2023;47(4):45. http://dx.doi.org/10.1007/s10916-023-01948-4

12. Arbez G, Birta L, Tolk A, Diallo SY, Rabelo L. Conceptual modeling: definition, purpose and benefits. In: Yilmaz L, Chan WKV, Moon I, Roeder T, Macal C, Rossetti MD, editors. Proceedings of the 2015 Winter Simulation Conference. Huntington Beach (CA): IEEE; 2015. p. 2812-26. https://www.informs-sim.org/wsc15papers/277.pdf

13. Li J, Liu Y, Lin K, et al. Integrating big data analytics into healthcare systems: challenges, opportunities, and future directions. J Biomed Inform [Internet]. 2021;113:103645. http://dx.doi.org/10.1016/j.jbi.2021.103645

14. Zeng D, Jiang H, Liang Z, et al. Data integration and standardization for health information systems: a systematic review. Health Inf Sci Syst [Internet]. 2020;8(1):37. http://dx.doi.org/10.1186/s13755-020-00306-z

15. Zhang Y, Wang W, Li Y, et al. Real-time data analytics for healthcare: an overview and future perspectives. Healthcare (Basel) [Internet]. 2022;10(8):1579. http://dx.doi.org/10.3390/healthcare10081579

16. Thompson S, Vickers J. Personalized medicine and big data: transforming healthcare with precision treatments. Clin Genet [Internet]. 2022;101(5):583-90. http://dx.doi.org/10.1111/cge.14143

17. Pérez P, Silva L, Rosso F, et al. Big data analytics in public health surveillance: recent advances and challenges. Int J Public Health [Internet]. 2022;67:67. http://dx.doi.org/10.1007/s00038-022-01858-x

18. Kim K, Jeong SH, Lee H, et al. Integrating social and clinical data for mental health prediction: a big data approach. J Psychiatr Res. 2021;137:49-56. doi:10.1016/j.jpsychires.2021.02.008

19. Lee Y, Lee H, Choi J, et al. Cloud-based mental health data storage and access: a practical approach. Health Inf Sci Syst. 2022;10(1):13. doi:10.1186/s13755-022-00320-z

20. García A, Martínez J, Hernández I, et al. Data processing for psychiatric diagnosis: a machine learning approach. J Med Syst. 2023;47(7):80. doi:10.1007/s10916-023-01958-2

21. Patel A, McCrindle C, Ward E, et al. Predictive models for bipolar disorder crises using big data. J Affect Disord. 2022;305:149–57. doi:10.1016/j.jad.2022.02.024

22. Zhang Y, Zhang Z, Wang W, et al. Clinical decision support using big data for psychiatric care: applications and challenges. Psychiatry Res. 2021;298:113801. doi:10.1016/j.psychres.2021.113801

23. Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;2(1):3. doi: 10.1186/2047-2501-2-3

24. Khan N, Yaqoob I, Hashem IAT, Inayat Z, Ali M, Kamaleldin W, et al. Big data: survey, technologies, opportunities, and challenges. Sci World J. 2014;2014:712826. doi: 10.1155/2014/712826

Published

2025-06-25

How to Cite

García-Maldonado, G., Guerra-Cárdenas, E., & Soriano-Juárez, E. M. (2025). Big data. Alternativa para una salud inteligente. Revisión de un modelo conceptual. ARCHIVOS DE MEDICINA, SALUD Y EDUCACIÓN MÉDICA, 4(1), 24–30. Retrieved from https://archivosdemedicina.uat.edu.mx/index.php/nuevo/article/view/91

Issue

Section

Artículos
Received 2025-05-29
Accepted 2025-05-29
Published 2025-06-25