Big data. Alternativa para una salud inteligente. Revisión de un modelo conceptual
Keywords:
Big data; cuidado de la salud; análisis en big data; sistemas de información en salud; marco conceptualAbstract
Introduction: Big Data emerged in the 1990s and refers to large volumes of complex data that can not be managed with traditional tools. Its fundamental characteristics are volume, speed and variety, although other characteristics have been added with the idea of improving the reliability of the information. In the field of health, this technology has transformed the collection and analysis of medical data from different sources, with the intention that the results are applicable to the population. The safe management of information remains a pending task.
Objectives: To review some topics related to this topic, and briefly analyze the phases of use and processing of Big Data through a conceptual model. The last objective, is to describe how the conceptual model can be applicable in psychiatry.
Material and methods: A search was carried out in databases such as Google Scholar, PubMed and Web of Science, using terms recommended in the MeSH to optimize the search. Original articles, reviews and meta-analyses published in the last five years were selected.
Results: Big Data has facilitated the personalization of treatments, and the creation of predictive diagnosis and preventive models in health. It has also optimized hospital management and decision-making. The development of computer technology, has enabled these achievements. The lack of standardization in systems, and concerns about data privacy continue to be a challenge.
Conclusions: Despite its potential, Big Data remains limited by interoperability and data quality. It is essential to implement ethical frameworks and standardize processes for its effective implementation, especially in areas such as psychiatry.
References
1. Mallappallil M, Sabu J, Gruessner A, Salifu M. A review of big data and medical research. SAGE Open Med [Internet]. 2020;8:2050312120934839. http://dx.doi.org/10.1177/2050312120934839
2. Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that arise from using complex predictive analytics in health care. Health Aff (Millwood). 2022;41(2):181-7. doi:10.1377/hlthaff.2021.01317
3. Ristevski B, Chen M. Big data analytics in medicine and healthcare. J Integr Bioinform. 2022;19(1):20210035. doi:10.1515/jib-2021-0035
4. Khoury MJ, Ioannidis JPA. Big data meets public health. Science. 2023;375(6585):1054-5.doi:10.1126/science.abj4538
5. Roski J, Bo-Linn GW, Andrews TA. Creating value in health care through big data: opportunities and policy implications. Health Aff (Millwood). 2023;42(5):1080-5. doi:10.1377/hlthaff.2022.00211
6. Kruse CS, Goswamy R, Raval Y, Marawi S. Challenges and opportunities of big data in health care: a systematic review. JMIR Med Inform. 2021;9(2):e21737. doi:10.2196/21737
7. Goyal P, Malviya R. Challenges and opportunities of big data analytics in healthcare. Health Care Sci [Internet]. 2023;2(5):328-38. http://dx.doi.org/10.1002/hcs2.66
8. Wood RM. Implementing big data analytics in practice - A response to “Factors impacting
the adoption of big data in healthcare: A systematic literature review”. Int J Med Inform [Internet]. 2024;192:105637. http://dx.doi.org/10.1016/j.ijmedinf.2024.105637
9. Hassan M, Awan FM, Naz A, de Andrés-Galiana EJ, Alvarez O, Cernea A, et al. Innovations in genomics and big data analytics for personalized medicine and health care: a review. Int J Mol Sci [Internet]. 2022;23(9):4645. http://dx.doi.org/10.3390/ijms23094645
10. Rutledge RB, Chekroud AM, Huys QJ. Machine learning and big data in psychiatry: toward clinical applications. Curr Opin Neurobiol [Internet]. 2019;55:152-9. http://dx.doi.org/10.1016/j.conb.2019.02.006
11. Raji M, Dandekar R, Aggarwal A. Privacy and security of health data in big data analytics. J Med Syst [Internet]. 2023;47(4):45. http://dx.doi.org/10.1007/s10916-023-01948-4
12. Arbez G, Birta L, Tolk A, Diallo SY, Rabelo L. Conceptual modeling: definition, purpose and benefits. In: Yilmaz L, Chan WKV, Moon I, Roeder T, Macal C, Rossetti MD, editors. Proceedings of the 2015 Winter Simulation Conference. Huntington Beach (CA): IEEE; 2015. p. 2812-26. https://www.informs-sim.org/wsc15papers/277.pdf
13. Li J, Liu Y, Lin K, et al. Integrating big data analytics into healthcare systems: challenges, opportunities, and future directions. J Biomed Inform [Internet]. 2021;113:103645. http://dx.doi.org/10.1016/j.jbi.2021.103645
14. Zeng D, Jiang H, Liang Z, et al. Data integration and standardization for health information systems: a systematic review. Health Inf Sci Syst [Internet]. 2020;8(1):37. http://dx.doi.org/10.1186/s13755-020-00306-z
15. Zhang Y, Wang W, Li Y, et al. Real-time data analytics for healthcare: an overview and future perspectives. Healthcare (Basel) [Internet]. 2022;10(8):1579. http://dx.doi.org/10.3390/healthcare10081579
16. Thompson S, Vickers J. Personalized medicine and big data: transforming healthcare with precision treatments. Clin Genet [Internet]. 2022;101(5):583-90. http://dx.doi.org/10.1111/cge.14143
17. Pérez P, Silva L, Rosso F, et al. Big data analytics in public health surveillance: recent advances and challenges. Int J Public Health [Internet]. 2022;67:67. http://dx.doi.org/10.1007/s00038-022-01858-x
18. Kim K, Jeong SH, Lee H, et al. Integrating social and clinical data for mental health prediction: a big data approach. J Psychiatr Res. 2021;137:49-56. doi:10.1016/j.jpsychires.2021.02.008
19. Lee Y, Lee H, Choi J, et al. Cloud-based mental health data storage and access: a practical approach. Health Inf Sci Syst. 2022;10(1):13. doi:10.1186/s13755-022-00320-z
20. García A, Martínez J, Hernández I, et al. Data processing for psychiatric diagnosis: a machine learning approach. J Med Syst. 2023;47(7):80. doi:10.1007/s10916-023-01958-2
21. Patel A, McCrindle C, Ward E, et al. Predictive models for bipolar disorder crises using big data. J Affect Disord. 2022;305:149–57. doi:10.1016/j.jad.2022.02.024
22. Zhang Y, Zhang Z, Wang W, et al. Clinical decision support using big data for psychiatric care: applications and challenges. Psychiatry Res. 2021;298:113801. doi:10.1016/j.psychres.2021.113801
23. Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst. 2014;2(1):3. doi: 10.1186/2047-2501-2-3
24. Khan N, Yaqoob I, Hashem IAT, Inayat Z, Ali M, Kamaleldin W, et al. Big data: survey, technologies, opportunities, and challenges. Sci World J. 2014;2014:712826. doi: 10.1155/2014/712826
Downloads
Published
How to Cite
Issue
Section
License
ARCHIVOS DE MEDICINA,SALUD Y EDUCACIÓN MÉDICA by Universidad Autónoma de Tamaulipas is licensed under a Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional License.
ARCIVOS DE MEDICINA, SALUD Y EDUCACIÓN MÉDICA es una revista digital de acceso abierto (OJS) y editada por la Universidad Autónoma de Tamaulipas, con publicación semestral Sitio web: ... Director de la revista:... Reserva de Derechos al Uso Exclusivo No..... otorgados por el Instituto Nacional del Derecho de Autor (INDAUTOR). Responsable de la última actualización Dr. José Alberto Ramírez de León, con domicilio en calle Matamoros S/N Zona Centro, C.P. 87000 Ciudad Victoria, Tamaulipas, México. Tels. (834) 3181800 y 3181700, ext 1148..
Accepted 2025-05-29
Published 2025-06-25